# Maximizing Performance: Fueling \& Hydration Strategies for Marathon and Half-Marathon 



ROYAL
VICTORIA
MARATHON

June 19th, 2023 at 7pm

Natasha Wodak, OLY
Olympian,
CDN Marathon Record Holder

Trent Stellingwerff, PhD
Canadian Sport Institute Pacific

CASE STUDY APPROACH

Tokyo \& Berlin

WODAK
BNAM

## Projected Tokyo Weather (humidex)

## Olympic Cities and the Heat Factor

Mean maximum 'Feels Like' temperatures between 2008 and 2016 during a given Summer Olympic Games period (in 'C)


[^0]
## 28 to 34 Celsius with 70 to 100\% humidity!

## Case study approach to Heat \& Altitude 2020(1) Olympics - Athletics...it takes a village

## Olympics

Gifu \& Tokyo


Trent Stellingwerff, PhD Physiology \& Nutrition / Cat Herder AC IST Lead \& West Hub / CSI Pacific

Flagstaff, Gifu
\& Sapporo


Gareth Sandford, PhD Physiologist
Post-Doctorate Fellow CSI Pacific / UBC / AC West Hub

Gifu Holding Camp


Jen Sygo, RD
Registered Dietitian Athletics Canada East Hub

Supported Medically
Paddy McCluskey, MD - Gifu / Tokyo Mike Koehle, MD - Gifu / Sapporo


## Paralympics

Gifu Holding Camp


Cameron Gee, PhD
Physiologist, ParaSport expertise Post-Doctorate Fellow UBC Okanagan Gifu \& Tokyo


Patricia Roney, MSc PT

Gifu Holding Camp


Jessalyn O'Donnell, RD Registered Dietitian CSI Pacific Athletics Canada West Hub Supported Medically Kim Coros, MD - Gifu / Tokyo


## PLUS many (>30) trusting athletes and coaches!

## Q\&A

## What are the general (top level)

 differences regarding nutrition/hydration for preparing for a hot championship marathon vs. a cool marathon major?Sports
Nutrition can Improve Endurance Performance.

## Prevalence of Gl symptoms


de Oliveira EP, Burini RC. The impact of physical exercise on the gastrointestinal tract. Curr Opin Clin Nutr Metab Care. 2009;12(5):533-8.
Horner KM, Schubert MM, Desbrow B, Byrne NM, King NA. Acute exercise and gastric emptying: a meta-analysis and implications for appetite control. Sports Med. 2015;45(5):659-78.
de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44 Suppl 1:S79-85.

Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344-51. ( $n=221$ )

## Blood shunting / Splanchnic hypo-perfusion



Gisolfi CV. Is the GI System Built For Exercise? News Physiol Sci. 2000;15:114-9.

## During severe/intense exercise

- splanchnic blood flow is markedly reduced
- intestinal permeability can increase
- comprised gut-barrier function
exercise in the heat and dehydration further impairs the gut via combined effects of ischemia, hypoxia, and hyperthermia

Exemplary humidity and temperature patterns during the scheduled 2020 Olympic Games period


~28-30 Celsius

## GI Problems \& History of GI Problems



## Is dehydration and/or heat stress relevant to Athletics?

 instituteTable 1. Potential body water balance concerns for Track \& Fiold athlatoc

| Event | Sweat Losses ${ }^{1}$ |  | Availability of Fluids |  | Risk of Dehydration |  | Performance Risk |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Training | Competitio n | Training | $\underset{\mathrm{n}}{\text { Competitio }}$ | Training | Competitio n | Training | Competitio n |
| Jumping (high jump, long jump, triple jump, pole vault) | MOD | LOW | HIGH | HIGH | LOW | LOW* | LOW | LOW |
| Throwing (shot put, javelin, discus) | MOD | LOW | HIGH | HIGH | LOW | LOW | LOW | LOW |
| Sprints <br> (< 800 meters) | MOD | LOW | HIGH | HIGH | LOW | LOW | LOW | LOW |
| Middle Distance <br> Running <br> ( 800 meters to 10 km ) | HIGH | LOW | MOD | LOW | MOD | LOW | MOD | HIGH |
| Long Distance Running/Walking $\text { ( > } 10 \mathrm{~km} \text { ) }$ | HIGH | HIGH | LOW | LOW | HIGH | HIGH | HIGH | HIGH |
| Multi-Events (Decathion) | HIGH | MOD | HIGH | HIGH | LOW | LOW | LOW | LOW |

${ }^{1}$ product of sweating rate and time; MOD = moderate; *assumes no purposeful dehydration

Availability of fluids during competition (or the ability to take on fluids at critical tactical times of a race) are not fully appreciated by individuals who exclusively advocate for drink to thirst.

[^1]
## Historical - Boston Marathon

SUGAR CONTENT OF THE BLOOD IN RUNNERS FOLLOWING A MARATHON RACE

WITH ESPECIAL REFERENCE TO THE PREVENTION OF HYPOGLYCEMIA: FURTHER OBSERVATIONS*

Jour. A. M. A.

BURGESS GORDON, M.D.
L. A. KOHN, M.D.; S. A. LEVINE, M.D.

MARCEL MATTON, M.D.
W. DE M. SCRIVER, M.D.

AND

giucose candies to be eaten from time to time while running. In addition, they were supplied with tea containing a large amount of sugar at stations along the course. The blood studies showed normal sugar levels in all runners, in contrast to the low figures obtained last year. There was also a striking improvement in their general physical condition. In a number of instances the running time was faster than in the year previous and the participants finished in better position. It seems, therefore, that the picture of exhaustion, weakness, shock and other symptoms of hypoglycemia following prolonged effort may be prevented by the adequate and timely ingestion of carbohydrate.

## CHO, Exercise Duration \& Performance Effects

$\mathrm{n}=38$ studies / 679 subjects of CHO vs. water using a TT with varying CHO intake rates


## RISK vs. REWARD - fuel \& fluids in the heat

## Improved

## performance

Carbohydrate (CHO) ingestion during exercise has been shown to improve endurance performance

Smith et al., JAP, 2010:
For 20km TT performance after 2hrs at 77\% Vo2peak For Performance:
$60 \mathrm{~g} \mathrm{CHO} / \mathrm{hr}>30 \mathrm{~g} / \mathrm{hr}>15 \mathrm{~g} / \mathrm{hr}>0 \mathrm{~g} / \mathrm{hr}$

## Impaired

 performance Too much carbohydrate and fluid intake may lead to gastrointestinal disorders and therefore impair performance*ACSM recommendations are 30 to 60 g carbohydrate / hour in ~6 to 8\% CHO solution
*Indications in Jeukendrup lab studies with multi-transportable carbohydrates had intake rates greater than 90 g carb / hour ( $\sim 12-15 \%$ CHO solutions) without any significant Gl discomfort.



## Hydration tracking

## LIQUID ASSETS <br> THEFACTS ABOUT HYDRATION FOR SUCCESS

## It is normal to lose ~2 to 3\% body weight during long duration training / racing

Your urine should be plentiful and it's colour should be in the well hydrated zone. If not, start drinking immediately.

| Weight loss $(\mathrm{kg})$ | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Volume to drink (m) | 0.25 | 750 | 1125 | 1500 | 1875 | 2250 | 2625 | 3000 |

1 L of sweat $=1 \mathrm{~kg}$ body weight

- Therefore, try and get a sense of individual sweat rate, in target race conditions by tracking pre to post- workout-out body weight.


## Practice fueling \& hydration sweat rate tracking during long runs

| Date | Temp | Humidity | Pre-Run <br> Weight (kg) | Post-Run <br> Weight (kg) | Amout of fluids ingested <br> (L) | Total amount of CHO's (grms) consumed | Time run hrs or fraction of hrs | Fluid intake rate (L/hr) | CHO intake <br> rate <br> (CHO/hr) | Sweat <br> Rate (L/hr) | \% Body Weight <br> Loss | Comments (feeling, Gl effects etc.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | \# $\mathrm{H} \mid \mathrm{V} / \mathrm{D}$ ! | \#\#\|V/0! | \# \# $\mathrm{Cl} / \mathrm{V} 0!$ | \#DIVM! |  |

Track information into spreadsheet / work tool to find out what your Individual sweat rate and fueling intake abilities are...

- On every run longer than $\sim 75$ min track sweat rate in different weather conditions, especially in targeted race weather conditions - track information into worksheet.
- Practice fueling and hydration in every long run. Practice with different amounts of fluids and fuels, mimicking the timing of intake in your race ( $\sim 15$ to 20min) -- track information into worksheet. Ideally practice under race pace intensities and durations!
- Aim for at least 40 g of carbs $/ \mathrm{hr}$ and $>500 \mathrm{ml} / \mathrm{hr}$ water to start. But try and really "test" your Gl and see what you can handle. The more you can adapt and handle taking in carbohydrate, the more fuel you will have at the end of the race. Ideally, you can adapt to hit $>60 \mathrm{~g} \mathrm{CHO} / \mathrm{hr}$ or more when running and $>90 \mathrm{~g} \mathrm{CHO} / \mathrm{hr}$ cycling!


## Practice fueling \& hydration sweat rate

 tracking during long runs
# Practice the RULE OF 15 $\sim 15$ to 25 g CHO every $\sim 15$ to 25 min into 

 solution)(~80 to 120 g CHO per liter of fluids)

- On every run longer than $\sim 75 \mathrm{~min}$ track sweat rate in different weather conditions, especially in targeted race weather conditions - track information into worksheet.
- Practice fueling and hydration in every long run. Practice with different amounts of fluids and fuels, mimicking the timing of intake in your race ( $\sim 15$ to 20min) -- track information into worksheet. Ideally practice under race pace intensities and durations!
- Aim for at least 40 g of carbs $/ \mathrm{hr}$ and $>500 \mathrm{ml} / \mathrm{hr}$ water to start. But try and really "test" your Gl and see what you can handle. The more you can adapt and handle taking in carbohydrate, the more fuel you will have at the end of the race. Ideally, you can adapt to hit $>60 \mathrm{~g} \mathrm{CHO} / \mathrm{hr}$ or more when running and $>90 \mathrm{~g} \mathrm{CHO} / \mathrm{hr}$ cycling!


## Practice / Practice / Practice



Natasha XX kg start // XX kg end
$=3.8 \%$ BW loss. Right on the upper/outer end of what we would want for a workout (2 to 4\%). But, felt strong throughout, so from a hydration perspective, a great session.

Great job on that.

7:20am - Temp - 25.0 / 48\%
Humidex $=28$

8:30am - Temp - 27.6 . 46.5\%
Humidex $=32$

9:00am
27.7C. 41.1\%

Humidex $=31$

Workout Splits


23:46 7k
20:22 6k
17:08 5k
13:36 4K
10:16 3k
6:46 2k
3:18 1k


- Can only get $\sim 50$ to 100 ml ( 1 to 3 swallows) per cup (the rest will usually spill out)
- That is only 3 to 6 grams of CHO per cup!
- Other options to hit fueling targets:
- Slow down and take 2 or 3 cups per aid station
- Augment CHO intake with gels that you carry
- Fuel belt

Natasha Wodak - Key Fueling Workouts in RED


## What type of sports drink?

- Carbohydrate concentration of
$\sim 5$ to $12 \%$ (ideally $\sim 6$ to $8 \%$ on hot days, more concentrated on cool days and with glucose:fructose blends)
-Ideally a carbohydrate blend of glucose:fructose (or maltodextrin \& fructose. Note: order of ingredient list indicates largest ingredient.)
- A sports drink or gel you have practiced with and have adapted to
- Ideally the same sports drink is available on race day, or accessible in race location
- A sports drink that, after practicing, still tastes good (no flavour fatigue)



## Q\&A

## What have you learned from these practice sessions?

How many practice sessions do you need?

## WODAK

## Do you mimic the entire race day (get up early too?)

# Sholerstand and tuy to 

 Mimplenent of aractice
## Sapporo Course Details - Marathon



Sapporo Challenge Half Marathon 2021 (Olympic Test Event)

- Typical Temps / winds humidity at race time?
- Location of aid tables (left or right handed? / off tangent?)
- Location of personal aid tables?
- Staff location / permissions required accreditations?
- Access to water, ice, ice tubs?
- Pre-event change tents - location / air conditioned?
- Medical support / type?

| StATION | KM | GAP |  |
| :--- | :--- | :--- | :--- |
| 1. | 4.8 | 4.8 | km |
| 2. | 8.5 | 3.7 | km |
| 3. | 13.2 | 4.7 | km |
| 4. | 16.3 | 3.1 | km |
| 5. | 20.1 | 3.8 | km |
| 6. | 23.2 | 3.1 | km |
| 7. | 26.3 | 3.1 | km |
| 8. | 30.1 | 3.8 | km |
| 9. | 33.1 | 2.0 | km |
| 10. | 36.2 | 3.1 | km |
| 11. | 40.1 | 3.9 | km |



The common factor among fast performances has been low Tdb (10.6-12.8C (M); 11.6-13.6-C (F)). The presence of cloud cover or low solar load does not increase the likelihood of running a fast marathon.

Ely, M.R., et al., Impact of weather on marathonrunning performance. Medicine and science in sports and exercise, 2007. 39(3): p. 487-93.

Ely, M.R., et al., Effect of ambient temperature on marathon pacing is dependent on runner ability. Medicine and science in sports and exercise, 2008. 40(9): p. 1675-80.

Men's 20km Event duration vs. \% Back from PB
Temp 32C
Men's \& Women's 50km
95.0\%


Temp 29C
Humidity 51\%
Humidex 35
Temp 32C

Humidex 46

|  | Ruth Heveemich | ken | 23238 | 2323 | 963 | 217708 | 823 | 21778 | ${ }^{823}$ | 11.45 | 1358 | 1145 | 1538 |  | 7 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Rose cham | 8 m | ${ }^{23136}$ | ${ }^{23136}$ | 928 | 2274 | sse | 220.35 | 5035 | ${ }^{106085}$ | 23 | 102 | ${ }^{2} 18$ | 12 | ${ }^{2}$ | 4 |  |
| ${ }_{4}^{4}$ | Healal Oomannes | ${ }_{\text {neen }}^{\text {nem }}$ | ${ }_{23231359}$ | ${ }_{2}^{23315}$ | ${ }^{238}$ | ${ }_{2}^{2295}$ | ${ }_{3} 385$ | 22028 | sus | ${ }^{20358}$ | ${ }_{128}^{1129}$ | Louss | ${ }^{1183}$ | ${ }_{32}^{32}$ | , | ${ }_{8}^{68}$ |  |
| , | volma maxroonax | ser | 23621 | 23621 | 931 | 22354 | 363 | 22613 | sm | 1098 | 12.5 | 10098 | 10.13 | 12 | a |  |  |
| $\stackrel{\square}{7}$ | Robers goover | jow |  | ${ }_{\text {230, }}^{23,59}$ |  | ${ }_{2}^{23509}$ | 8898 | ${ }_{227298}^{2285}$ | ${ }_{8}^{\text {sma }}$ |  | \% 11.5 | 10948 | 988 | 12 | \% | ${ }_{4}^{46}$ |  |
|  | rang | pmx |  |  | \% | ${ }^{222006}$ | 8se |  | 395 | 10905 |  |  | 1282 | ${ }_{12}$ |  |  |  |
| , | Lmotare resster | an | 2202058 | 20203 | 9 m | 230087 | 3007 |  |  | 10735 | 12 |  |  | 12 | a |  |  |
| 10 | unokio | ${ }^{\text {pax }}$ | 23273 | 2023 | 973 | 22712 | ${ }^{832}$ | ${ }_{22712}$ | ${ }^{8332}$ | ${ }_{\text {nose }}$ | ${ }^{1318}$ | ${ }^{110.38}$ | ${ }^{3158}$ | , | \% | 4 |  |
| 11 | Sodat nacano | Pen | 228239 | 20239 | 939 | 22739 | 8859 | 22739 | 2039 | ${ }^{\text {nax }}$ | 1500 | 10288 | ${ }^{1.300}$ | 12 |  |  |  |
| ${ }_{1}^{18}$ | Came omorf | usa | 24.3558 | 2 2045 | 93 | 23112 | 307 |  | 802 | 1095\% | 12.38 |  | 1988 | ${ }_{32}^{32}$ | m | 4 |  |
| ${ }^{4}$ | Kwneotre | pma | 238610 | 24.681 | 996 | 22858 | 318 | 22858 | 18318 | 1] | 13.30 | ${ }^{11.18}$ | 13.30 | 12 | a |  |  |
| ${ }^{5}$ | valume ¢охезно | Kevo | 2048 | zatse | ${ }^{2} 8$ | 22313 | 2037 | ${ }_{2}^{22388}$ | sis | 117, | ${ }^{2302}$ | mase | ${ }^{23,60}$ | 12 | a |  |  |
| ${ }_{17}^{16}$ | Mertacauman |  | ${ }_{2}^{248981}$ | ${ }^{20} 5$ | (1005 | ${ }_{2}^{232724}$ | Sems | ${ }_{\substack{20015 \\ 2030}}^{2}$ | 9210 | L1106s | ${ }_{2128}$ | ${ }^{1110958}$ | (1218 | ${ }_{3}^{12}$ | 近 | ${ }^{6}$ |  |
| ${ }^{18}$ | Hotas fouse | swe | 29917 | 209317 | 1035 | 227 | 5350 | 22730 | 5380 | 131.18 | 1962 | 1318 | 19.62 | 32 | 7 |  |  |
| 19 | Ame merimmanimen | ${ }^{\text {niw }}$ | ${ }^{23128}$ | 25126 | 1026 | 22as3 | ${ }^{313}$ | 223508 | 304 | 1318 | 225 | H10.06 | 1237 | 32 | ${ }^{4}$ |  |  |
|  | Rutenco iom involom | ${ }_{\text {zam }}$ | ${ }_{22523}^{2323}$ | ${ }_{23231}^{2323}$ | 103s | ${ }_{20,59}^{22059}$ | 329 | ${ }^{2272393}$ | \%29 | coss | ive | \%esme | , 1298 | 12 | a |  |  |
|  | 5 Sardena trofmova | ama | 23526 | 25326 | 10386 | 22438 | ${ }^{8673}$ | 23131 | 3091 | 19 | 20.13 | mass | 2125 | ${ }_{32}$ | , |  |  |
| ${ }^{23}$ | Naret wisu | ${ }^{\text {en }}$ | Sms |  | 10202 | 2235 | ${ }^{337}$ | 22357 | 337 | 11658 | 280 | 116068 | ${ }^{22.30}$ | 32 | , | \% |  |
| ${ }^{28}$ |  | Moum | ${ }_{2}^{23524}$ | ${ }_{\substack{23524 \\ 28625}}$ | (1029 | ${ }_{\substack{23158 \\ 2315}}^{2}$ | 9067 | ${ }_{2}^{271528}$ | 906\% | ${ }_{\text {lex }}^{11218}$ | 2000 | , | $\underset{ }{22300}$ |  | , | ${ }_{6}$ |  |
|  | Altas vamo | ${ }_{\text {fin }}$ |  | 25830 |  |  | 9204 |  |  |  |  |  |  | 32 |  |  |  |
| ${ }^{27}$ | meame mrano | can | 25700 | 2570 | 10960 | 2330 | ${ }^{2200}$ | 23132 | 9200 | mes | 3 | usox | 13 | 12 | , | \% |  |
| ${ }^{28}$ | 起 | por | 28519 | 238819 | 10098 | ${ }^{22347}$ | 885 | 223 | ${ }^{8687}$ | \% | ${ }^{3235}$ | ${ }^{123.28}$ | ${ }^{333}$ | ${ }^{32}$ | 2 |  |  |
| 30 | Slimapavilurzo | Gem | ${ }_{2}^{25063}$ | ${ }_{2}^{28593}$ | 1073 | ${ }_{22301}^{2331}$ | \%31 | ${ }_{2}^{23,12}$ | 3832 | niles | ${ }_{268}$ | mask | ${ }_{23}^{2300}$ | 32 |  |  |  |
| 3 | Menuels soccal | ${ }_{\text {a }}$ | 23931 | 25911 | 1073 | 23709 | 23 | 20005 | seos | maos | ${ }^{208}$ | m9\% | 13.10 | 12 | , | 8 |  |
| 12 |  | ${ }^{\text {an }}$ | ${ }^{300,38}$ | ${ }^{3,0038}$ | 12038 |  | 3000 | 20 | 3000 | 11945 | 230 | ax | 30 | 12 | \% | 4 |  |
| 3 | cuomuchers | ${ }_{\text {axm }}$ |  | 30156 | 10976 | ${ }_{2}^{20142}$ | gres | 220142 | , 9020 | ${ }^{12935}$ | (323) |  | ${ }^{3023}$ | 12 | , | ${ }_{5}^{6}$ |  |
| ${ }_{35}$ | Rochele | aus | ${ }_{3}^{30512}$ | ${ }_{3}$ | 1112 | ${ }_{23} 23.45$ | ${ }^{3285}$ | ${ }_{2} 23,45$ | ${ }_{9235}$ | \%19, | 330.5 | \% | ${ }_{30.25}$ | ${ }_{32}$ | , | ${ }_{8}$ |  |
| ${ }_{3}^{36}$ | Andereunssic | ${ }_{\text {sme }}^{\text {sma }}$ | (30613 | 3.0.73 | 1118 1110 | ${ }_{2358}^{2358}$ | 9395 | ${ }^{23,45}$ | ${ }^{295}$ |  | ${ }^{3130}$ | ${ }^{12028}$ | ${ }^{3130}$ | ${ }_{3}^{12}$ | \% | ${ }^{26}$ |  |

## Race execution - PACING ADJUSTMENTS!!!

Delay (mm:ss)


## Summary

## Huge amount of pre-prep

## 



## Success?



What led to nearly $30 \%$ of runners pulling out of Tokyo Olympic men's marathon?

TOKYO -- Thirty of the 106 competitors in the
Tokyo Olympic men's marathon on the Games' final day pulled out of the race. The event started and ended at Sapporo Odori Park in Japan's
northernmost prefecture of Hokkaido -- a relocation
from Tokyo meant to beat the heat and where,
despite concerns, temperatures did not reach 30 degrees Celsius during the race. So why were so many runners unable to finish?
and water while running at around the 15 kilometer mark during the men's marathon at the Tokyo Olympic Games in Sapporo on Aug. 8, 2021. (Pool photo)


The interventions seemed to help. Athletics Canada had 27 endurance athletes, that resulted in 2 medals and $>50 \%$ finishing in the top 16 ( 6 athletes top 8), and 9 road based athletes started and 9 finished (and no major heat related medical issues)! Overall Athletics Canada had their most successful Games since the 1930's.

Malindi and Natasha were $9^{\text {th }}$ and $13^{\text {th }}$, respectively.

## Thank you!

## ROYAL VICTORIA MARATHON

## Questions?


[^0]:    Source: Wond Weather Online, Dataset

[^1]:    Casa, D. J., Cheuvront, S. N., Galloway, S. D., \& Shirreffs, S. M. (2019). Fluid Needs for Training, Competition, and Recovery in Track-and-Field Athletes. International journal of sport nutrition and exercise metabolism, 29(2), 175-180.

